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1Max Planck Institute for Intelligent Systems, Tübingen, Germany 2University of Amsterdam (UvA), the Netherlands
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Figure 1. We present InteractVLM, a novel method for estimating contact points on both human bodies and objects from a single in-the-
wild image, shown here as red patches. Our method goes beyond traditional binary contact estimation methods by estimating contact points
on a human in relation to a specified object. We do so by leveraging the broad visual knowledge of a large Visual Language Model.

Abstract

We introduce InteractVLM, a novel method to estimate
3D contact points on human bodies and objects from single
in-the-wild images, enabling accurate human-object joint
reconstruction in 3D. This is challenging due to occlusions,
depth ambiguities, and widely varying object shapes. Ex-
isting methods rely on 3D contact annotations collected
via expensive motion-capture systems or tedious manual
labeling, limiting scalability and generalization. To over-
come this, InteractVLM harnesses the broad visual knowl-
edge of large Vision-Language Models (VLMs), fine-tuned
with limited 3D contact data. However, directly applying
these models is non-trivial, as they reason “only” in 2D,
while human-object contact is inherently 3D. Thus we in-
troduce a novel “Render-Localize-Lift” module that: (1)
embeds 3D body and object surfaces in 2D space via multi-
view rendering, (2) trains a novel multi-view localization
model (MV-Loc) to infer contacts in 2D, and (3) lifts these
to 3D. Additionally, we propose a new task called Seman-
tic Human Contact estimation, where human contact pre-
dictions are conditioned explicitly on object semantics, en-
abling richer interaction modeling. InteractVLM outper-
forms existing work on contact estimation and also facili-
tates 3D reconstruction from an in-the-wild image. To es-

timate 3D human and object pose, we infer initial body
and object meshes, then infer contacts on both of these via
InteractVLM, and last exploit these for fitting the meshes to
image evidence. Results show that our approach performs
promisingly in the wild. Code and models are available at
https://interactvlm.is.tue.mpg.de.

1. Introduction

People interact with objects routinely. Reconstructing
human-object interaction (HOI) in 3D is key for many ap-
plications, from robots to mixed reality. However, doing so
from single images is challenging due to depth ambiguity,
occlusions, and the diverse shape and appearance of objects.

There are methods that estimate 3D human bodies and
methods that estimate 3D objects, but few that put these
together. Knowing the contacts between these could signif-
icantly improve joint reconstruction. Our goal is to infer
contact points on both humans and objects from single in-
the-wild images, and then use these contacts for jointly re-
constructing humans and objects. However, there is a lack
of in-the-wild training images paired with ground-truth con-
tact labels for both 3D humans and objects. Acquiring such
data is challenging and existing methods do not scale.
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The problem gets more challenging due to the complex-
ity of real-world interactions. Humans often contact multi-
ple objects simultaneously; e.g., using a laptop while sitting
on a club chair. Yet, current approaches treat contact predic-
tion as simple binary classification; i.e. detecting whether a
body part is in contact with “any” object. This simplified
assumption fails to capture the rich semantic relationships
of multi-object interactions. To address this, we introduce
a novel “Semantic Human Contact” estimation task. This
involves predicting the contact points on the body related to
a particular object given a single in-the-wild image.

To tackle this, as well as to overcome data scarcity, we
propose a new paradigm for scaling and reasoning in the
wild. Specifically, we observe that large Vision-Language
Models (VLMs) can “reason” about in-the-wild images be-
cause they are trained on internet-scale data and possess a
broad visual knowledge about humans and their interactions
with the world. We also observe that this knowledge can be
re-purposed for novel tasks by fine-tuning these large mod-
els on small datasets. Thus, we exploit VLMs for develop-
ing a novel framework, called InteractVLM.

At the heart of InteractVLM lies a reasoning module
based on a VLM; see Fig. 2. We enrich this with skills for
3D human-object “understanding,” by extending the VLM
with a LoRA [28] adaptation layer. As a result, given a
color image, this module can be “asked” to produce “rea-
soning tokens” that facilitate 3D contact localization.

However, exploiting these tokens to localize contact is
non-trivial. A natural choice would be to employ a founda-
tional “localization” model [33] that takes these tokens as
“guidance,” and highlights the 3D contacts. But there exists
a key practical problem. Existing foundation models inher-
ently operate only in 2D space, while we need them to do
so in 3D. To tackle this, we need to re-cast our problem so
it is appropriate for 2D foundation models.

To this end, we develop a novel “Render-Localize-Lift”
(RLL) framework that has three main steps; see Fig. 2:
(1) We render the 3D shape of a canonical SMPL+H [55]
body and an object as 2D images from multiple viewpoints.
Regarding the object, a 3D mesh is efficiently retrieved from
a large-scale 3D database [13] through OpenShape [44].
(2) We pass the above images into a foundation model to
predict 2D contact masks for both the body and the object.
(3) We lift the predicted 2D contact points to 3D points via
back-projection, i.e., performing the inverse of the first step.

However, even after recasting the problem to 2D by ren-
dering multi-view images, existing foundation models are
still not 3D aware, i.e. they treat each view independently,
ignoring multi-view consistency. This means contact detec-
tions in one view do not necessarily agree with ones in ad-
jacent views. To tackle this, just appending camera param-
eters to multi-view renderings is insufficient. Instead, we
build a novel “Multi-view Localization” model that we call
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Figure 2. Overview of InteractVLM. Given a color image, our
VLM performs the core reasoning, and guides a novel MV-Loc
model to localize contacts on both bodies and objects in 3D. Here
we show only the body; for details, and object contact, see Fig. 3.

MV-Loc. This has two steps: (1) It transforms the “reason-
ing token” provided by the VLM with the camera param-
eters used to render the multi-view images. (2) It ensures
multi-view consistency, by lifting the inferred 2D contacts
in each view to 3D and computing a 3D loss.

Our method, InteractVLM, utilizes a VLM in tandem
with our novel multi-view localization model, MV-Loc, to
perform 3D contact prediction for humans and objects. See
Fig. 1 for some examples. We quantitatively evaluate the
efficacy of our method for in-the-wild 3D contact predic-
tion on bodies and on objects, using the DAMON [60] and
PIAD [67] datasets, respectively. For bodies, we evaluate
both for the traditional “binary contact” estimation, and for
our new task of “semantic contact” estimation. For all tasks,
we find that InteractVLM outperforms the prior work.

Finally, we demonstrate how InteractVLM’s estimated
contact improves 3D HOI recovery from in-the-wild im-
ages; this is a highly ill-posed task due to depth ambi-
guities and occlusions. To address this, we develop an
optimization-based method that fits a SMPL-X body mesh
and an OpenShape-retrieved object mesh to the image, us-
ing InteractVLM’s inferred contacts as constraints to anchor
human and object meshes w.r.t. each other. To the best of
our knowledge, this is the first approach for estimating 3D
HOI for in-the-wild images using inferred contacts.

In summary, we make four key contributions:
1. We build InteractVLM, a novel method that facilitates

HOI reconstruction from an in-the-wild image by detect-
ing 3D contacts on both bodies and objects.

2. We demonstrate a way to minimize reliance on 3D con-
tact annotations via exploiting the broad visual knowl-
edge of Vision-Language Models.

3. We build a novel “Multi-view Localization” model that
helps in estimating contacts in 3D by transforming the
reasoning of foundation models from 2D to 3D.

4. We introduce the novel “Semantic Human Contact” task
for inferring body contacts conditioned on object labels.

Our code and trained models are available for research at
https://interactvlm.is.tue.mpg.de.
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2. Related Work

2.1. Large Vision-Language Models
Recent advancements in large language models (LLMs)
have led to the development of multimodal models that
integrate vision and language reasoning. Models like
Flamingo [2] and BLIP-2 [38] use cross-attention mecha-
nisms and visual encoders to align image features with text,
supporting a variety of vision-language tasks. More recent
works, such as VisionLLM [62] and Kosmos-2 [52], use
grounded image-text data to enhance spatial understand-
ing, while GPT4RoI [70] introduces spatial box inputs for
finer alignment. However, these models typically lack end-
to-end segmentation capabilities. To address this limita-
tion, LISA [36] combines vision foundation segmentation
models like SAM [33] with multimodal embeddings, en-
abling language-guided segmentation. PARIS3D [15] ex-
tends this approach to referential 3D segmentation by pro-
cessing multi-view object renders through both SAM and
LLaVA [43] for spatially-aware segmentation.

Taking inspiration from these approaches, we exploit a
language-guided segmentation model for the task of pre-
dicting human and object contact in 3D. However, unlike
PARIS3D, we process a single RGB image with LLaVA
and multi-view renders of the human mesh and the object
mesh with SAM. Moreover, we introduce a feature-lifting
technique that extends LLaVA’s 2D features into 3D using
camera parameters, thus guiding SAM’s multi-view seg-
mentations. This approach ensures multi-view consistency
and efficiently predicts contact affordances, extending the
use of multimodal models in 3D reasoning tasks focused on
human-object interaction.

2.2. 3D Human and Object from Single Images
Estimating 3D human pose and shape from a single image
has evolved from optimization-based methods to learning-
based approaches. Optimization-based methods fit para-
metric body models like SMPL [47], SMPL-X [51], or
GHUM [66] to 2D cues such as keypoints [9], silhou-
ettes [50], or segmentation masks [50]. Learning-based
methods either regress body parameters from images or
videos [5, 16, 17, 31, 34, 35, 39] or estimate non-parametric
bodies as vertices [37, 42], implicit surfaces [48, 56], or
dense points [58]. Transformer-based methods [18, 23, 41,
57] have further improved robustness.

For 3D object reconstruction from a single image,
regression-based methods predict geometry using meshes,
voxels, or point clouds. Diffusion-based models [27] utilize
large 3D datasets like Objaverse [13] or 2D diffusion mod-
els [40, 45, 46, 53] to guide reconstruction and optimization
methods [4] use render and compare. Retrieval-based meth-
ods, such as OpenShape [44] and Uni3D [71], have demon-
strated some robustness in cases with occlusions.

2.3. 3D Human-Object Interaction

Understanding 3D human-object interactions is essential for
modeling realistic scenes. Early works focused on hand-
object interactions, such as ObMan [26] and FPHA [22],
with more recent studies like ARCTIC [19] and HOLD [20]
providing more detailed data and reconstruction for hands.
For full-body interactions, initial studies involve interac-
tions with scenes, as in PROX [24], and with objects, as
in BEHAVE [7], GRAB [59], and InterCap [30]. BEHAVE
and GRAB use motion capture that are accurate but non-
scalable, while InterCap uses multi-camera setups that are
more scalable but less accurate. Both of these approaches
are limited in capturing diverse and realistic interactions.

As a proxy for 3D reconstruction, recent methods like
DECO [60] and HOT [11] infer contact on body meshes
and image pixels, respectively, for which contact annota-
tions are crowdsourced. Predicting contact on objects is
more challenging due to varying object shapes, while also
currently there exists no dataset of object contact for in-the-
wild images. Thus, we estimate 3D object affordances as a
proxy for contact. 3D-AffordanceNet [14] introduces affor-
dances that are not grounded in images, capturing the likeli-
hood of humans interacting with specific parts of an object
for a given affordance (e.g., “sit on chair”). PIAD [67] cu-
rates RGB images depicting object affordances and trains
a network to estimate them. LEMON [68] extends object
affordance prediction of PIAD to include human contact es-
timation. However, these methods require human contact
vertices paired with object affordances for training, limiting
the number of categories they handle to 21 ones. In contrast,
we learn from unpaired human and object interaction data
enabling human interaction reasoning for 80 categories and
object affordance prediction for 32 categories.

2.4. Joint 3D Human-Object Reconstruction

Joint reconstruction of humans and objects in 3D has
been tackled with both regression and optimization meth-
ods. Regression-based methods directly predict 3D human-
object meshes, as in HDM [64] and CONTHO [49], while
other methods first predict contact points and then use test-
time optimization to fit human and object meshes, as in
CHORE [63] and PHOSA [69]. Since regression meth-
ods rely on limited training data, optimization methods are
preferred for in-the-wild scenarios, such as PHOSA [69].
Optimization-based methods either assume known contacts
or infer contacts to fit meshes to the image, but their success
heavily relies on the quality of contact.

Our method improves upon these by providing more ac-
curate contact predictions, which in turn facilitate better fit-
ting of human and object meshes to image evidence, im-
proving the realism and accuracy of 3D human-object re-
constructions from single images.
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Figure 3. Method overview. Given a single in-the-wild color image, our novel InteractVLM method estimates 3D contact points on both
humans and objects (a). Then, we reconstruct a 3D human and object in interaction by exploiting these contacts (b). More specifically:
(a) Contact estimation. Given an image, I, and prompt text, Tinp, our VLM, Ψ, produces contact tokens for humans and objects, <HCON>
and <OCON>, which are projected (Γ) into feature embeddings, EH and EO. These guide a “Multi-View [contact] Localization” model.
This renders the 3D human and object geometry via cameras, K, into multi-view 2D renders and passes these to encoder, Θ, while
decoders, ΩH , ΩO, estimate and highlight 2D contacts in these renders. Then, the FeatLift module, Φ, transforms the VLM’s features
(EH , EO) to become 3D-aware (EH

3D, EO
3D) by exploiting the camera parameters, K. A final module lifts the detected 2D contacts to 3D.

(b) 3D HOI reconstruction. For joint human-object reconstruction, we use InteractVLM’s inferred contacts in an optimization framework.

3. Method

3.1. Input Representation

Given an image, I ∈ RH×W×3, InteractVLM estimates 3D
contacts for both human bodies and objects.

The human is represented by a SMPL+H [55] 3D body
mesh, H, with vertices VH ∈ R10475×3. The body is posed
in a canonical “star” shape (see details in Sec. 3.4). The
human contacts are binary per-vertex labels, CH ∈ {0, 1}.

The object is represented by a 3D point cloud (or mesh),
O ∈ RN×3, with N points. As there are no datasets of natural
images paired with 3D contacts for objects, we use a large-
scale 3D affordance dataset [67], instead, as affordances are
closely related to contact. Specifically, they represent the
likelihood of contact on 3D object areas for various pur-
poses. Therefore, for objects we use the terms “affordance”
and “contact” interchangeably. The object contacts are con-
tinuous per-point values, CO ∈ [0, 1]. During inference, we
retrieve a 3D object shape from a large database [13] via
OpenShape [44] conditioned on image I.

3.2. Overview of InteractVLM

The biggest challenge for learning 3D contact prediction in
the wild is the limited 3D contact data for humans and ob-
jects. To go beyond existing limited datasets, we introduce
a novel method, called InteractVLM, that harnesses the
commonsense knowledge of large vision-language models.

Specifically, InteractVLM (Fig. 3) has two main compo-
nents: a Vision Language Model (VLM) and a novel Multi-
View contact Localization model (MV-Loc). MV-Loc high-
lights parts that are in contact for both humans and objects
with the VLM’s guidance. The input to the VLM (Sec. 3.3)
is an image, I, and a prompt, Tinp, that asks the VLM to
detect contact. The input to MV-Loc (Sec. 3.4) is the 3D
geometry of humans and objects, H and O, respectively.

3.3. Interaction Reasoning through VLM

The VLM module, Ψ, conducts the core interaction reason-
ing. It takes an input image, I, and prompt text, Tinp, and
outputs a prompt text, Tout = Ψ(I,Tinp). Inspired by the
recent LISA [36] model, we expand the VLM’s vocabulary
with two specialized tokens, <HCON> and <OCON>, for con-
tact information for humans and objects, respectively.

To denote contact, Ψ produces a prompt that includes the
above tokens. To aid MV-Loc in localizing contact, we ex-
tract the last-layer embeddings of the VLM corresponding
to these tokens and pass them through a projection layer, Γ,
to obtain the feature embeddings, EH or EO. Let Tgt be the
ground-truth text, and Tpred be the predicted one. Then, our
token-prediction loss is defined as a cross-entropy loss:

Ltoken = −
∑N

i=1(T (i)
gt · log(T (i)

pred)). (1)
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3.4. Interaction Localization through MV-Loc
We develop a novel MV-Loc module that has a shared image
encoder, Θ, and separate decoders, ΩH and ΩO, for humans
and objects. MV-Loc performs contact localization by us-
ing a novel “Render-Localize-Lift” (RLL) framework. To
this end, it takes three steps; (1) rendering the 3D shape of
humans and objects in 2D, (2) predicting 2D contact maps
for both of these, and (3) lifting the 2D contact maps to 3D.

RLL step #1: Render 3D→2D. The input is human and
object geometry, namelyH and O, respectively. Both serve
as a “canvas” for “painting” detected contacts on these. The
body has a default SMPL+H shape in a canonical star-shape
pose to minimize self-occlusions when rendering. The ob-
ject geometry (initialized in Sec. 3.1) is normalized to a
unit sphere. Each geometry is rendered from J fixed views
with camera parameters, K, to form multi-view renderings,
RH,O = {R j}

J
j=1, so that the entire 3D geometry is cap-

tured. Since our geometries do not have texture, we color
the meshes with normals and point clouds using the NOCS
map [61]. This enhances cross-view correspondence, mak-
ing renderings resemble real images to image encoder, Θ.

RLL step #2: Localize in 2D. The rendered geometry,
RH,O, is first sent to the image encoder, Θ, and then passed
to decoders, so that the final contact masks, MH and MO,
get highlighted on it. However, MV-Loc requires spatial
and contextual cues for highlighting the contact region. To
this end, we use the feature embeddings (Sec. 3.3), i.e. EH

and EO to guide the contact localization.
However, since the VLM reasons in 2D, these features

are not 3D aware. This is a problem, because MV-Loc needs
3D awareness to localize contact consistently across multi-
view renderings. Thus, we transform the features to “lift”
them to “3D” to better guide multi-view localization.

In detail, we design a lifting network, Φ, which takes
camera parameters, K, and the 2D EH,O, and lifts the latter
to 3D as EH,O

3D = Φ(EH,O,K). Contact masks are defined as:

MH,O = ΩH,O(Θ(RH,O), EH,O
3D
)
. (2)

Below, the H and O superscripts are dropped for brevity.
We calculate losses only on “valid” regions, i.e., the areas
within the outline of rendered geometry; we denote this as
M. To encourage overlap between the predicted masks, M,
and the ground-truth ones, M̂, particularly in sparse contact
regions, we use a focal-weighted BCE loss and a Dice loss:

LBCE = −α(1− pM)γ log(pM)− (1−α)pγM log(1− pM), (3)

LDice = 1 −
2
∑

M · M̂ + ϵ∑
M +
∑

M̂ + ϵ
, (4)

where pM is the predicted mask probability, α controls class
balance, γ adjusts the focus on hard examples, and ϵ is a
residual term to prevent division by zero.

RLL step #3: Lift 2D→3D. To lift the inferred 2D con-
tact points to 3D points, we follow the inverse of step #1.
Normally, 2D points backproject to 3D lines due to depth
ambiguities. In our case the lines intersect with the known
3D geometry that produced the multi-view renders. So, 2D
points are lifted to 3D points, and by extension 2D contact
masks, MH,O, are lifted to 3D contact areas, CH,O.

We use a human contact loss, LH
C , that combines a fo-

cal loss with sparsity regularization, to encourage precise
true-positive predictions in “valid” contact regions while
discouraging false positives in non-contact areas:

LH
C = α(1 − phC)γ log(phC) + λ∥CH∥1, (5)

where phC is the contact probability, and λ, α and γ are
scalar weights. We also use an object contact loss, LO

C , that
combines a Dice and Mean Squared Error (MSE) loss:

LO
C = LDice(CO, ĈO) + β∥CO − ĈO∥22, (6)

where β is a weighting factor, and ĈO denotes the ground-
truth 3D contacts for objects.

3.5. Implementation Details
Architecture. We use LLaVA [43] as our VLM and SAM
[33] for our MV-Loc, with weights pre-trained by LISA [36]
for segmentation [36]. The feature-lifting network, Φ, con-
tains a spatial-understanding network (two fully-connected
layers of size 128 with ReLU activation) followed by view-
specific (256-dimensional) transformations and a sigmoid
activation. For 3D contact prediction, our MV-Loc model
converts 2D masks to 3D contact points via 2D-to-3D pixel-
to-vertex mappings that are precomputed during MV-Loc’s
rendering step. For details, see Sup. Mat.

Training. To efficiently fine-tune our VLM, we employ
LoRA [28] with rank 8. The separate decoders for human
and object contact prediction are trained without LoRA,
while keeping the image encoder frozen. For training, we
use DeepSpeed [3] with mixed precision training (bfloat16),
and batch size of 8. We train on 4 Nvidia-A100 GPUs for
30 epochs. For more details, please refer to Sup. Mat.

Datasets. We focus on two tasks, i.e., 3D human con-
tact and 3D object affordance prediction, using two in-
the-wild datasets, i.e., DAMON [60] and PIAD [67], re-
spectively. For human contact we train and evaluate on
DAMON [60]. For 3D object affordances, we train and
evaluate on PIAD [67]. We find that exploiting textual
descriptions for the contacting body parts, and the object
type in contact, helps training. Similarly, adding Visual
Question-Answering (VQA) data generated by GPT4o for
the training images also helps. For details, see Sup. Mat.

Unlike LEMON [68], which requires paired human-
object geometry for training using the 3DIR dataset [68],
we use unpaired data. This enables us to scale for many hu-
man and object categories not addressed by prior work. For
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Method F1 Precision Recall Geodesic
(%) ↑ (%) ↑ (%) ↑ (cm) ↓

POSAPIXIE [25] [21] 31.0 42.0 34.0 33.00
BSTRO [29] 46.0 51.0 53.0 38.06
DECO [60] 55.0 65.0 57.0 21.32

InteractVLM 75.6 75.2 76.0 2.89

Table 1. Evaluation for “Binary Human Contact” prediction on
the DAMON dataset [60]. We compare our InteractVLM model
(trained only for this task) with the state of the art.

Semantic-DECO [60] (Baseline) InteractVLM

Object F1 Prec. Rec. Geo F1 Prec. Rec. Geo
Categories (%) ↑ (%) ↑ (%) ↑ (cm) ↓ (%) ↑ (%) ↑ (%) ↑ (cm) ↓

Accessory 40.1 30.7 75.6 21.88 61.1 72.9 65.6 6.91
Daily Obj 26.5 20.1 52.3 60.34 68.6 71.4 78.0 7.46
Food 11.7 19.4 12.9 49.61 66.4 66.1 77.9 7.17
Furniture 24.5 15.8 83.7 29.17 60.5 64.2 60.1 6.21
Kitchen 27.7 24.7 37.2 52.34 71.8 71.3 81.1 7.61
Sports 36.4 30.4 80.1 79.21 77.9 76.7 83.2 7.98
Transport 52.0 39.1 93.7 31.78 77.8 80.5 78.9 7.97

Table 2. Evaluation for “Semantic Human Contact” prediction on
the DAMON [60] dataset. For results on each class, see Sup. Mat.
The “Semantic-DECO” baseline extends DECO for our new task.

the final joint human-object reconstruction task, we com-
bine DAMON [60], PIAD [67], 3DIR [68] and all textual
descriptions about body parts, contact type and HOI.

Evaluation metrics. For human contact prediction, fol-
lowing Tripathi et al. [60], we report the F1, precision, and
recall scores using a threshold of 0.5, and a geodesic dis-
tance measuring spatial accuracy. For object contact pre-
diction, following Yang et al. [67], we report the Similar-
ity (SIM), Mean Absolute Error (MAE), Area Under ROC
Curve (AUC), and average Intersection over Union (IOU).

4. Experiments

4.1. “Binary Human Contact” Estimation
This task refers to estimating contact areas on the body
via binary classification of its vertices, ignoring the num-
ber or type of objects involved. We train and evaluate on
the DAMON [60] dataset, and report results in Tab. 1.

InteractVLM significantly outperforms all previous
methods achieving a 20.6% improvement in F1 score. Al-
though, here, InteractVLM is trained on the same data as
DECO, it goes beyond this by harnessing the commonsense
knowledge of a large foundation model.

In Sup. Mat. we also evaluate on the 3DIR [68] dataset
and compare with the LEMON method [68]. Even though
LEMON uses paired human-object data, InteractVLM per-
forms on-par with it despite training on human-only data.
We also evaluate InteractVLM’s performance for binary hu-
man contact prediction across different body parts; for more
details please refer to Sup. Mat.

PIAD-Seen [67] PIAD-Unseen [67]

Methods SIM AUC aIOU MAE SIM AUC aIOU MAE
(%) ↑ (%) ↑ (%) ↑ ↓ (%) ↑ (%) ↑ (%) ↑ ↓

PMF [72] 42.5 75.05 10.13 1.41 33.0 60.25 4.67 2.11
ILN [10] 42.7 75.84 11.52 1.37 32.5 59.69 4.71 2.07
PFusion [65] 43.2 77.50 12.31 1.35 33.0 61.87 5.33 1.93
XMF [1] 44.1 78.24 12.94 1.27 34.2 62.58 5.68 1.88
IAGNet [67] 54.5 84.85 20.51 0.98 35.2 71.84 7.95 1.27

InteractVLM 62.7 86.47 21.20 0.81 41.4 75.45 8.50 0.99

Table 3. Evaluation for “Object Affordance Prediction” on the
PIAD [67] dataset. We compare our InteractVLM model (trained
only for this task) with the state of the art.

4.2. “Semantic Human Contact” Estimation
In real-life interactions, multiple objects can be contacted
by different body areas concurrently. Thus, we introduce
a novel task called “Semantic Human Contact” prediction.
We evaluate on DAMON [60] and report results in Tab. 2;
for a finer-grained version of this table, see Sup. Mat.

To establish a baseline, we adapt the DECO model [60]
that detects binary contacts and turn it into a multi-class pre-
diction model, called Semantic-DECO. Due to DAMON’s
limited training data, this has poor performance. Instead, as
discussed in Sec. 4.1, InteractVLM learns effectively from
this data, by also leveraging the commonsense of founda-
tion models. Thus, it significantly outperforms Semantic-
DECO. Qualitative results reflect this finding; see Fig. 4.
Our model captures detailed, accurate contact regions,
whereas Semantic-DECO often highlights false-positive ar-
eas that differ from the actual contact regions.

4.3. Object Affordance Prediction
We evaluate the performance of our InteractVLM model on
predicting object affordances. This involves identifying re-
gions on objects of possible contact for a certain interaction
intent, such as “sitting” on a chair or “moving” it. We train
and evaluate on the PIAD [67] dataset. We compare against
SotA methods, and report results in Tab. 3.

Note that we evaluate on object instances that are both
seen during training (“PIAD-Seen” column) and unseen
(“PIAD-Unseen” column). Our model demonstrates a sig-
nificant improvement over SotA methods in terms of simi-
larity (SIM), area under the curve (AUC), and mean abso-
lute error (MAE) for both seen and unseen objects. Thus,
our method is effective not only for estimating human con-
tact (Secs. 4.1 and 4.2), but also for object affordances.

4.4. Reliance on 3D Annotations
To analyze InteractVLM’s efficiency regarding 3D supervi-
sion, we train multiple versions of it with varying amounts
of training data from the DAMON dataset, and report per-
formance in Fig. 5. Remarkably, InteractVLM achieves an
F1 score of 0.53 with just 1% of the data, nearly matching
the 0.55 F1 score of DECO that uses 100% of the data. With
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Figure 4. “Semantic Human Contact” estimation (Sec. 4.2). Given an image and an object label, InteractVLM infers body contacts for
this object. InteractVLM outperforms a Semantic-DECO [60] baseline. Objects are shown in green circles, and contacts as red patches.
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Figure 5. InteractVLM’s reliance on 3D annotations. We evalu-
ate performance for “binary human contact” (F1 score, Y-axis) for
models trained on a varying percentage of DAMON [60] training
data (X-axis). The DECO baseline trains on 100% of DAMON.
Instead, InteractVLM trains on a varying (smaller) portion of this
dataset. Yet, it achieves a significantly higher performance, by
leveraging the broad visual knowledge of foundation models.

only 5% of the data, InteractVLM surpasses DECO, reach-
ing an F1 score of 0.58. This performance gap widens as
training data increases, ultimately achieving 0.75 F1 score
with 100% of the data. This is a compelling finding, high-
lighting InteractVLM’s efficient use of 3D supervision by
leveraging the rich visual understanding of foundation mod-
els. Note that the strong performance with limited training
data has high practical value, because obtaining 3D annota-
tions is expensive.

Ablations. For a study on the influence of InteractVLM
components, including mask resolution, MV-Loc variants,
loss functions, training data, the influence of the VLM, and
the effect of text prompts, please refer to Sup. Mat.

5. Joint Human-Object Reconstruction
We demonstrate the usefulness of 3D contacts inferred by
InteractVLM for reconstructing a 3D human and object in
interaction from a single in-the-wild image, I.

Initializing 3D body pose & shape, object shape. We
use OSX [41] to estimate a 3D SMPL-X body mesh, H, and
OpenShape [44] to retrieve a 3D object mesh, O, from the
Objaverse [13] database that best matches the image.

Initializing 3D object pose. We apply InteractVLM on
image I to predict 3D body and object contact vertices,
CH ,CO. Then, we solve for object pose, {RO, tO} by ap-
plying the ICP [6] algorithm to snap the 3D object contact
points, CO, onto body ones, CH . To avoid false correspon-
dences, the 3D normals of contact points must be compati-
ble, i.e., should have similar angles but opposite directions.

Optimizing 3D object pose. Given the above initializa-
tion, we optimize over object rotation, RO, translation, tO,
and scale, sO, via render-and-compare by minimizing:

E = EM + λC EC , (7)

EM = IoU(M̂,M) + ||M̂c − Mc||2, (8)

EC =
1

|CH ||CO|

∑
i∈|H|

∑
j∈|O|

CH
i CO

j ∥V
H
i − VO

j ∥2, (9)

where EM is a mask loss, EC is a contact loss, IoU is
intersection-over-union, M̂,M are hypothesis and ground-
truth masks, respectively, M̂c,Mc are the corresponding
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Input Image PHOSA InteractVLM (Ours) Input Image InteractVLM (Ours)PHOSA

Figure 6. 3D HOI reconstruction (Sec. 5). We build an optimization method that fits a SMPL-X body and OpenShape-retrieved object to
an in-the-wild image. We evaluate against the SotA method PHOSA [69]. Reconstruction is guided by InteractVLM-inferred contacts.

mean mask pixels, |CH |, |CO| are the number of contact ver-
tices on the human and object, |H|, |O| are the number of
mesh vertices, VH

i , VO
j are the i-th and j-th human and ob-

ject vertices, while CO
i , CH

j indicate whether vertices are in
contact or not. Given the image, we extract the object mask,
M, via SAM [33], and a depth map, D, via Depth Pro [8].

Intuitively, we use the EM loss to align the 3D object to
the image, while in EC the predicted 3D contacts “anchor”
the 3D object onto the body so they interact realistically. We
perform iterative optimization via Adam [32]. OSX pro-
duces reasonable bodies, so we keep these fixed. The ob-
ject is updated in each iteration – we render depth, D̂, and
masks, M̂, via a PyTorch3D [54] differentiable renderer.

Qualitative Results. We reconstruct 3D human-object
interaction from an image. We show results in Fig. 6, and
compare with PHOSA [69], the most related SotA method.
InteractVLM’s reconstructions look more realistic. Note
that PHOSA uses handcrafted contacts on humans and bod-
ies. Instead, InteractVLM infers 3D contacts on both human
bodies and objects from the single in-the-wild image. These
play a crucial role for guiding 3D reconstruction under oc-
clusions and depth ambiguities.

Perceptual Study. There exists no in-the-wild dataset
with 3D ground truth for HOI, so we conduct a perceptual
study via Amazon Mechanical Turk for evaluation. Specifi-

cally, we evaluate the realism of our reconstructions against
ones of PHOSA. We randomly select 55 images for which
PHOSA has handcrafted contact annotations. For each im-
age, participants are shown (with random swapping) recon-
structions generated by our method and by PHOSA, and are
asked to select the one that best represents the image. Our
reconstructions are preferred 62% of the time.

6. Conclusion
We develop InteractVLM, a novel method for estimating 3D
contacts on both humans and objects from a single natural
image. InteractVLM has a reduced reliance on expensive
3D contact annotations for training, by leveraging the broad
knowledge of Vision-Language Models. Specifically, we
introduce a novel “Render-Localize-Lift” (RLL) framework
and a novel multi-view localization model (MV-Loc) to
adapt 2D foundation models for 3D contact estimation. We
outperform existing work on contact estimation and intro-
duce a new “Semantic Human Contact” estimation task for
inferring body contacts conditioned on object labels. This
goes beyond traditional binary contact estimation, which
fails to capture rich semantic relationships of multi-object
interactions. Last, we develop the first approach that uses
inferred contact points on both bodies and objects for joint
3D reconstruction from single in-the-wild images.
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InteractVLM: 3D Interaction Reasoning from 2D Foundational Models
Supplementary Material

S.1. Human Contact Prediction
S.1.1. Evaluation on the 3DIR Dataset
We evaluate our method against several state-of-the-art
approaches for human contact prediction on the 3DIR
dataset [67] as shown in Tab. S.1. Our method outperforms
methods that are trained on 3D training data for only hu-
mans, while it is on par with methods that use 3D data
for both humans and objects. Moreover, by eliminating the
requirement for paired human-object contact training data,
our method can be trained on more categories than prior
work, as unpaired datasets are more varied. This makes our
method more practical for real-world applications.

S.1.2. Contact Estimation Across Body Parts
We extend our binary contact estimation’s evaluation to
measure our method’s performance across different human
body parts to ensure it captures nuanced interactions effec-
tively. As shown in Tab. S.2, our method (InteractVLM)
significantly outperforms DECO [60] across all body parts,
including the head, torso, hands, arms, feet, and legs. The
results demonstrate our method excels at detecting contacts
across diverse body parts, making it well-suited for real-
world scenarios.

S.1.3. Semantic Human Contact per Object Class
We evaluate our method’s performance on “semantic human
contact” prediction across a diverse set of object categories
from the DAMON dataset, as shown in Tab. S.3. Results
for high-level categories are presented in the main paper.
We compare our method against “Semantic-DECO”, which
is our extension of the existing DECO [60] model for this
new task. Our method significantly outperforms Semantic-
DECO in terms of F1-score for all categories. It also
demonstrates strong performance across a wide range of
object categories, from large objects like furniture (couch:
62.1% F1, chair: 70.3% F1) to small objects for sports
(baseball glove: 93.6% F1, tennis racket: 82.3% F1).

S.2. Ablation Studies
We conduct extensive ablation studies to evaluate the con-
tribution of InteractVLM’s main components, including the
influence of the VLM and prompt design choices. The re-
sults are summarized in Tab. S.4, where we use alphabet
numbering to refer to each variant for clarity. Below, we
discuss the key findings from these experiments.
Mask Resolution and MV-Loc Components. Increas-
ing the mask resolution from 512 × 512 (variant (a)) to

Method 3D Supervision F1 Prec. Rec. Geo.
Human Obj. (%) ↑ (%) ↑ (%) ↑ (cm) ↓

BSTRO [29] ✓ ✗ 55.0 57.0 58.0 28.58
DECO [60] ✓ ✗ 69.0 70.0 72.0 15.25
LEMON-P [68] ✓ ✓ 77.0 76.0 81.0 9.02
LEMON-D [68] ✓ ✓ 78.0 78.0 82.0 7.55

InteractVLM ✓ ✗ 78.4 82.5 76.3 6.73

Table S.1. Evaluation for “Binary Human Contact” prediction on
the 3DIR dataset [68]. Note that LEMON is trained with paired
human-object contact data from 3DIR dataset. Instead, for this
task, InteractVLM is only trained with human contact data from
the same dataset.

Method Head Torso Hips Hands Arms Feet Legs

DECO [60] 20.0 46.1 66.6 74.3 22.2 94.4 66.6
Ours 56.0 87.2 95.7 93.5 71.5 96.9 68.3

Table S.2. F1 scores for human contact estimation w.r.t. body parts

1024 × 1024 (variant (b)) yields a significant improvement
of 4.9% in F1 score, highlighting the importance of fine-
grained spatial information for contact detection. For the
MV-Loc feature embedding, using our FeatLift network
(variant (e)) outperforms simply concatenating camera pa-
rameters (variant (d)) by 3.7%, demonstrating its effective-
ness in incorporating viewpoint information. Removing
camera parameters entirely (variant (c)) further degrades
performance, emphasizing their role in the pipeline. How-
ever, the performance significantly drops when we replace
MV-Loc with a 2 layer MLP (variant (f)).
Loss Functions. Using only the valid mask regions for
training (variant (h)) improves performance by 3.3% com-
pared to using the whole mask (variant (g)). The addition of
our 3D contact loss (variant (i)) further boosts the F1 score
by 3%, underscoring the importance of explicitly modeling
3D contact cues during training.
Data and VLM Influence. The choice of training data
significantly impacts performance. Using only 3D contact
datasets (variant (j)) results in a relatively low F1 score of
65.9%. Adding contact parts in text form (variant (k)) im-
proves performance by 8.9%, while further incorporating
HOI-VQA data (variant (l)) achieves the best results. This
demonstrates the value of leveraging textual and contextual
cues for contact localization.

The VLM plays a critical role in the pipeline. Removing
the VLM entirely (variant (m)) drastically reduces perfor-
mance, while using a VLM with only image input (vari-
ant (n)) serves as a strong baseline. Fine-tuning the VLM
(variant (b)) is crucial, as the non-fine-tuned version (variant
(o)) shows a significant drop in performance. Interestingly,
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Object # Semantic-DECO [60] InteractVLM (Ours)

F1 Prec. Rec. Geo. F1 Prec. Rec. Geo.
Categories (%) ↑ (%) ↑ (%) ↑ (cm) ↓ (%) ↑ (%) ↑ (%) ↑ (cm) ↓

Skateboard 85 30.3 19.3 91.3 99.95 71.5 67.0 83.5 0.90
Surfboard 70 23.1 14.2 98.4 101.22 79.7 76.3 78.9 0.80
Snowboard 49 38.2 25.7 92.2 108.29 84.2 83.1 84.0 0.20
T. Racket 45 57.0 42.0 99.6 64.25 82.3 80.8 86.3 0.20
Cell phone 43 42.4 27.8 99.6 51.73 70.6 73.1 74.3 7.00
Couch 38 31.4 19.7 89.2 17.07 62.1 62.5 60.5 2.10
Bicycle 37 62.1 48.0 98.1 29.89 81.5 84.4 81.9 2.50
Chair 36 23.2 14.6 87.1 36.05 70.3 73.6 68.8 1.60
Bench 35 19.0 11.2 92.1 29.51 63.0 70.7 64.4 4.00
Motorcycle 33 60.4 45.5 99.1 19.24 76.6 78.6 77.7 0.90
Book 27 48.0 33.8 99.7 53.59 74.1 75.2 80.1 1.10
Skis 25 36.5 25.0 93.4 104.07 83.0 81.4 83.7 0.80
Bed 24 29.1 19.1 82.9 20.71 54.0 56.7 48.8 2.70
Laptop 24 36.9 24.9 94.4 45.73 54.0 54.0 68.6 4.70
Backpack 24 37.2 24.3 87.2 12.10 59.2 71.1 54.8 3.50
Umbrella 23 51.5 36.1 99.2 67.20 82.3 83.7 86.4 1.00
Knife 19 63.3 54.0 84.4 31.55 77.0 74.9 86.6 0.10
Frisbee 15 33.9 22.0 99.4 69.43 68.7 71.5 84.5 1.00
D. Table 11 19.6 14.1 67.1 42.56 35.2 44.9 63.4 6.60
B. Glove 10 71.4 63.3 81.9 41.58 93.6 98.6 89.1 0.10
Remote 10 0.2 1.0 0.1 82.16 70.6 77.4 82.7 0.50
Banana 10 6.1 7.1 6.4 67.19 76.6 74.3 81.7 2.80
Kite 9 65.3 51.8 95.9 50.50 85.4 86.0 85.4 0.30
Toothbrush 8 2.9 4.7 2.1 56.38 77.3 82.6 74.8 5.40
Boat 8 33.5 23.9 83.7 46.24 71.3 75.3 63.1 1.40
Sports ball 8 36.0 34.1 39.4 60.54 64.4 74.0 83.8 5.30
B. Bat 8 36.7 60.8 27.2 26.00 82.8 81.2 87.8 1.60
Apple 7 6.3 17.4 3.9 45.69 69.3 62.9 77.7 4.20
Handbag 7 12.1 7.0 46.2 26.61 31.8 27.1 40.4 4.10
Tie 6 39.8 28.1 87.2 7.24 49.6 32.8 60.8 7.60
Suitcase 6 26.7 24.0 30.7 87.44 79.2 65.9 83.4 0.80
Wine glass 5 5.5 8.4 5.0 70.32 66.4 68.5 69.4 4.40
Spoon 5 61.1 48.5 89.9 15.35 67.5 62.8 78.5 5.50
Fork 5 1.5 1.6 1.3 75.47 64.9 66.2 76.5 2.20
Keyboard 5 3.2 6.2 3.1 70.41 60.8 69.1 74.0 0.50
Teddy bear 5 17.5 15.7 45.0 24.70 43.8 61.6 68.8 11.60
Clock 4 23.3 14.8 58.1 46.42 37.1 68.9 75.0 3.30
Cake 4 0.0 0.0 0.0 83.99 52.4 41.9 82.2 10.60
Scissors 4 0.2 0.2 0.2 87.88 28.7 21.4 73.1 40.10
Cup 4 7.2 11.2 5.4 69.03 68.6 71.4 76.2 1.70
Car 4 0.0 0.0 0.0 49.13 66.7 67.7 73.3 5.30
Pizza 4 19.4 19.0 35.1 46.43 44.3 44.1 71.4 29.20
Carrot 3 0.0 0.0 0.0 90.22 59.7 62.4 77.6 0.20
Truck 3 0.0 0.0 0.0 61.65 81.2 84.9 77.5 3.10
Bottle 3 0.0 0.0 0.0 91.14 59.2 55.1 81.2 0.10
Airplane 2 0.0 0.0 0.0 87.52 76.4 69.3 85.2 3.60
Toilet 2 0.0 0.0 0.0 86.55 32.5 35.7 71.1 3.30
Hot dog 2 7.0 23.0 4.1 46.32 81.3 84.0 78.9 4.10
Donut 2 19.6 30.7 14.8 42.47 73.6 90.1 65.6 12.00
Mouse 1 0.0 0.0 0.0 82.03 40.7 27.0 82.9 0.10
Vase 1 0.0 0.0 0.0 91.96 68.5 59.3 81.0 0.20
F. Hydrant 1 0.0 0.0 0.0 88.18 85.5 82.7 88.5 0.00

Table S.3. Evaluation for “Semantic Human Contact” prediction
on the DAMON [60] dataset for different object categories in the
test set. The number of samples for each category is shown in
the second column. “Semantic-DECO” is our extension of the
existing DECO [60] model for this new task. Zero metrics indicate
no correct predictions for the class.

reducing the VLM size from 13B to 7B parameters (vari-
ant (p)) has minimal impact, suggesting that the model can
maintain strong performance even with fewer parameters.
Prompt Design. The design of the text prompt signif-
icantly influences the results. Using fine-grained contact
parts (variant (q)) outperforms a coarse segmentation (vari-
ant (r)) by 6.4% in F1 score, indicating that finer granular-
ity in body part labeling is beneficial. Removing the ob-
ject name from the prompt (variant (s)) also degrades accu-
racy, highlighting the importance of explicit object context

Variants F1 Prec. Rec.
(%) ↑ (%) ↑ (%) ↑

Masks (a) Size 512 × 512 70.7 70.1 71.4
(b) Size 1024 × 1024 75.6 75.2 76.0

MV-Loc

(c) No CamParams 69.4 68.0 71.1
(d) Concat CamParams 71.9 72.0 71.8
(e) FeatLift (Φ) 75.6 75.2 76.0
(f) No MV-Loc 62.3 60.8 63.9

Losses
(g) Whole Mask 69.3 68.7 70.0
(h) Valid Mask 72.6 71.2 74.0
(i) + 3D Contact Loss 75.6 75.2 76.0

Data
(j) 3D Contact Datasets 65.9 64.8 67.0
(k) + Contact Parts (text) 74.8 74.5 75.1
(l) + HOI-VQA 75.6 75.2 76.0

VLM

(m) No VLM 32.3 30.8 43.0
(n) VLM-13B-Img 67.2 68.5 66.0
(o) VLM-13B-NoFT 64.8 65.3 64.2
(p) VLM-7B 73.3 76.8 73.5

Prompt
(q) Contact parts (fine) 74.8 74.5 75.1
(r) Contact parts (coarse) 68.4 69.0 67.8
(s) No object name 71.5 72.1 70.9

Table S.4. Ablation study for the effect of different InteractVLM
components. We evaluate for “Binary Human Contact” prediction
on the DAMON dataset [60].

in guiding the VLM’s predictions.
Our ablation studies demonstrate the importance of fine-

grained spatial information, effective feature embedding,
3D contact modeling, and well-designed prompts in achiev-
ing robust contact localization. The VLM’s role, particu-
larly its fine-tuning and input modalities, is also critical to
the overall performance.

S.3. Impact of RLL
“Render-Localize-Lift” (RLL) is central to our method.
Traditional approaches, like DECO [60] and RICH [29],
rely on fully supervised learning with limited 3D GT data to
predict 3D contacts. While effective for scenarios encoun-
tered during training, these methods fail to generalize to in-
the-wild cases. To address this limitation, we leverage the
broad visual knowledge of VLM to learn from the limited
data. However, effectively utilizing VLM requires reformu-
lating our 3D problem into a 2D representation, making it
compatible with VLM, which we achieve through RLL. As
demonstrated in the main paper, by using RLL with VLM,
we surpass the state-of-the-art method for human contact
estimation while training on only 5% of the data.

S.4. Implementation Details
S.4.1. Architecture
InteractVLM has two major blocks; a reasoning module,
Ψ, based on LLaVA-v1 [43] and a novel multi-view local-
ization model, MV-Loc, based on SAM [33]. MV-Loc has
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2 components; a shared encoder, Θ and two separate 2D
contact decoders, ΩH and ΩO, for humans and objects re-
spectively. Θ, ΩH , and ΩO have the same architecture as
SAM.

Given an RGB image, I, and prompt text, Tinp, the VLM
produces contact tokens, <HCON> and <OCON>, for humans
and objects, respectively. To aid MV-Loc in localizing con-
tact, we extract the last-layer embeddings of the VLM cor-
responding to these tokens and pass them through a projec-
tion layer, Γ. The latter, Γ, is a multi-layer perceptron with
2 layers each of size 256 and a ReLU activation.

S.4.2. Training

Before the start of training, we render multiple views of the
human mesh and object point cloud. We also compute the
ground-truth contact mask.

S.4.2.1. Human Mesh Rendering

The human mesh rendering pipeline uses a comprehensive
multi-view approach using the SMPL+H [55] parametric
body model. We initialize the model in a neutral shape, po-
sitioning the body in a Vitruvian pose. This specific pose
ensures optimal visibility of potential contact surfaces. We
use PyTorch3D for rendering. We select 4 camera view-
points to capture the complete body geometry: top-front (el-
evation 45°, azimuth 315°), top-back (45°, 135°), bottom-
front (315°, 315°), and bottom-back (315°, 135°). Each
viewpoint is positioned at a distance of 2 units from the
subject with slight horizontal translations to optimize cov-
erage. We use a FoV-Perspective projection model rendered
at 1024×1024 resolution, with “blur-radius” and “faces-per-
pixel” settings set as 0.0 and 1, respectively. For realistic
appearance, we use point lights positioned at [0, 0, ±3] co-
ordinates relative to the mesh. The lighting settings such
as “ambient”, “diffuse”, and “specular” are set at 0.5, 0.3,
0.2, respectively. This creates a balanced illumination that
highlights surface details. Surface normals are computed
per vertex and are used as vertex colors.

Crucially, InteractVLM maintains precise correspon-
dence between 2D rendered pixels and 3D mesh vertices.
For each rendered view, it generates: (1) A pixel-to-vertex
mapping matrix storing the indices of mesh vertices visible
at each pixel. (2) Barycentric coordinates for accurate in-
terpolation within mesh faces. (3) Binary contact masks for
regions with at least three neighboring vertices in contact.

This comprehensive multi-view representation, com-
bined with precise pixel-to-vertex correspondences, enables
accurate lifting of 2D contact predictions back to the 3D
mesh space. Our model processes each view as separate
channels in a B × V × 3 × H ×W tensor shape during train-
ing, where B is the batch size and V is the number of views.

S.4.2.2. Object Point Cloud Rendering

The object rendering pipeline uses point clouds to capture
object affordances in multiple views. The point cloud pre-
processing begins with normalization, where each object is
centered at its geometric centroid and scaled to fit within
a unit sphere, ensuring consistent scale across different ob-
jects. Since the point clouds do not have color, we use the
NOCS representation for coloring, namely for every point
we assign a color derived from its normalized spatial NOCS
coordinates (scaled to [0.1, 0.9] for better contrast).

Our rendering pipeline uses PyTorch3D with four view-
points: front-left (elevation 45°, azimuth 315°), front-right
(45°, 45°), back-left (330°, 135°), and back-right (330°,
225°). Each view is rendered at 1024×1024 resolution us-
ing a FoVPerspective camera positioned at a distance of 2
units from the object center. We use a fixed point cloud
radius of 0.05. For the rasterization settings: we use 10
points per pixel and 50,000 points per bin to handle dense
point clouds effectively. An alpha compositor is used for
the final rendering. For affordance heatmaps, we generate
a rendered view with continuous values, [0, 1], representing
the affordance likelihood. For each view, we create a pixel-
to-point mapping for lifting 2D affordance heatmaps to 3D
affordance points.

S.4.3. Additional Text Data for Training

S.4.3.1. Data from GPT4o

To enhance our model’s understanding of human-object
interactions (HOI), we build a comprehensive Visual
Question-Answering (VQA) data generation pipeline us-
ing GPT-4V (GPT4o). The pipeline processes images from
three datasets, namely DAMON [60], LEMON [68], and
PIAD [67], generating structured textual descriptions that
capture multiple aspects of HOI.

For each image, we query GPT-4V to describe five key
aspects: (1) the human’s visual appearance including cloth-
ing and distinctive features, (2) specific body parts in con-
tact with the object, (3) the nature of the interaction, (4) the
object’s physical characteristics, and (5) the specific parts
of the object in contact with the human. To ensure efficient
processing while maintaining visual fidelity, images are re-
sized to 256×256 pixels.

These generated VQA data enrich the training signal
with detailed descriptions of interactions. This additional
supervision helps our model develop a more nuanced un-
derstanding of the relationship between visual features and
contact regions, ultimately contributing to improved per-
formance in contact prediction tasks. We format the col-
lected data as JSON files to seamlessly integrate these with
our VLM training pipeline, allowing the model to leverage
these rich textual descriptions during the learning process.
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Figure S.1. Contact Estimation Failure Cases. Our method
struggles with unusual human poses (left). For objects (right),
training on affordances rather than actual contacts can sometimes
lead to ambiguous contact predictions, especially for large objects
like chairs. However, no dataset exists for 3D object contacts for
in-the-wild images.

Figure S.2. Object Retrieval Failure Cases. The retrieved object
meshes (right) differ notably from the actual objects in the input
images (left), especially in cases of significant occlusion, atypi-
cal object instances, or limited database coverage. Despite these
inaccuracies, the retrieval consistently selects objects within the
correct semantic category.

S.4.3.2. Converting 3D contact vertices to text
To establish a precise mapping between 3D contact vertices
and natural-language descriptions, we leverage the SMPL
body model’s semantic segmentation. The body is divided
into 15 semantically meaningful parts including the torso,
head, hands, feet, arms, legs, thigh and forearm. For train-
ing our VLM, we employ a diverse set of natural-language
prompts that query about body part contacts with objects.
This structured approach creates a strong bridge between
geometric contact information and natural-language under-
standing, enabling the model to learn the relationship be-
tween visual features, contact regions, and their semantic
descriptions.

S.5. Failure Cases

Despite the overall strong performance, our method has cer-
tain limitations. For human contact prediction, our method
occasionally struggles with unusual or ambiguous poses
that deviate significantly from common interaction patterns.
For example, in Fig. S.1 the person is sleeping in an unusual
pose on the bed.

Regarding objects, our method faces challenges inher-
ent to the training paradigm. Since there exists no dataset
of in-the-wild images with ground-truth 3D contact annota-
tions for objects, we train on affordance data, which repre-
sents likelihood of contact rather than actual contact points.
However, the distinction between actual contacts and affor-
dances can be ambiguous, particularly for large objects like
chairs, as shown in Fig. S.1.

In highly occluded or visually ambiguous scenarios, our
approach can face challenges due to object lookup failure.
The object lookup is also limited by the richness and di-
versity of underlying object database. However, since our
method performs retrieval within predefined object cate-
gories, it consistently retrieves an object instance belonging
to the correct semantic category, even if exact geometric
matches are not always guaranteed. We provide qualitative
examples highlighting these limitations in Fig. S.2.

S.6. Qualitative Results
We present qualitative results for our InteractVLM method
for three different tasks. First, in Fig. S.3 we show the ob-
ject affordance prediction results, where our method more
accurately identifies plausible contact regions on objects
compared to the state-of-the-art IAGNet method. Sec-
ond, we show “semantic human contact” prediction results
in Fig. S.4, where our method successfully identifies contact
regions on human bodies specific to different object cate-
gories, even in complex scenarios. Finally, in Fig. S.5, we
demonstrate 3D HOI reconstruction from in-the-wild im-
ages, where we leverage the inferred contacts on both hu-
man bodies and objects to generate physically plausible 3D
reconstructions; this is done for the first time for in-the-wild
images.

S.7. Future Work
Our approach follows a two-stage process for 3D HOI: it
first predicts human and object contacts, and then uses the
inferred contacts in optimization for joint 3D reconstruc-
tion. In the future, we will explore learning to perform both
3D contact prediction and 3D reconstruction in an end-to-
end fashion. This could lead to more coherent predictions
by learning and exploiting direct relationships between con-
tact points and physical constraints.

Moreover, currently our approach learns on disjoint im-
age datasets of body contacts and object affordances. In the
future, we will also exploit recent datasets of images paired
with contact annotations for both bodies and objects [12].
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Input Image IAGNet InteractVLM (Ours) Input Image IAGNet InteractVLM (Ours)

Figure S.3. Object Affordance Prediction. Here we compare our InteractVLM method trained for object affordance prediction on
PIAD [67] dataset with the state-of-the-art IAGNet method. We train for affordance detection because there exists no dataset of in-the-wild
images paired with ground-truth 3D contacts for objects. Note that given an image of a person performing an action like “sit” or “grasp”,
the affordance prediction task estimates “contact possibilities” on the object.
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Input Image InteractVLM (Front) InteractVLM (Back) Input Image InteractVLM (Front) InteractVLM (Back)

Figure S.4. Semantic Human Contact estimation. Here we show results for “semantic human contact” estimation from in-the-wild
images. Each row shows a person in contact with multiple objects. Note how InteractVLM estimates contact on bodies that is specific to
the object.
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Input Image InteractVLM (Front) InteractVLM (Side) Input Image InteractVLM (Front) InteractVLM (Side)

Figure S.5. 3D HOI reconstruction. Here we show results of our InteractVLM method for 3D HOI reconstruction from in-the-wild
images. We use the InteractVLM’s inferred contacts on both bodies and objects for joint 3D reconstruction.
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